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ABSTRACT
Gaze based navigation with digital screens offer a hands-free
and touchless interaction, which is often useful in providing
a hygienic interaction experience in a public kiosk scenario.
The goodness of such a navigation system depends not only
on the accuracy of detecting the eye gaze but also on the abil-
ity to determine whether a user is interested in clicking a but-
ton or is just looking at the button. The time for which a user
needs to gaze at a particular button before it is considered
as a click action is called the dwell time. In this paper, we
explore intelligent adjustment of dwell times, where mouse
click events on the buttons of a given application are emu-
lated with user gaze. A constant dwell-time for all buttons
and for all users may not provide an efficient and intuitive in-
terface. We thereby propose a model to dynamically adjust
dwell-time values used to emulate user mouse click events,
exploiting the user’s experience with different portions of a
given application. The adjustment happens at a per-user, per-
button granularity, as a function of the user’s (a) prior usage
experience of the given button within the application and (b)
Midas touch characteristics for the given button.

We propose OptiDwell, inspired by the action-value method
based solutions to the Multi-Armed Bandits problem, for
dwell click time adaptation. We experiment OptiDwell us-
ing an interactive TV channel browsing interface applica-
tion, constituting of a mix of text and image buttons, over
10 computer-savvy users generating over 9000 click tasks.
We observe significant improvement of user comfort level
over the sessions, quantified by (a) improved (reduced) dwell
times and (b) reduced number of Midas touches in spite of
faster dwell-clicks, as high as 10-fold reduction in the best
case. Our work is useful for creating an interface, with ac-
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curate, fast and comfortable dwell-clicks for each interface
element (e.g., buttons), and each user.
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INTRODUCTION
Eye gaze based interactions are often used to provide a
user with an alternative to mouse-control navigation. They
have been considered useful in several scenarios such as
in zoomable information spaces [16], multimodal conversa-
tional interfaces [21] and for executing user interface com-
mands [17]. They provide a touchless and more natural in-
teraction with a visual interface. As opposed to speech based
interaction, eye gaze can be used in public spaces, without
being intrusive.

Research on human eye gaze estimation and tracking
(EGET) has attained significant maturity over the past decade
[1][32][34], and has entered its fourth era since the year 1879
[22]. Specialized gaze tracking hardware, such as EyeLink 1,
Tobii 2 and Eye Tribe 3, have emerged. While the expensive
devices such as Tobii and EyeLink provide high accuracy in
estimating and tracking eye gaze, they often come at a high
cost running into many thousands of dollars. On the other
hand, affordable hardware such as Eye Tribe, cost an order
of magnitude lesser, making these devices viable for practical
use. However, they have lower frame sampling rates and im-
age resolutions, leading to a somewhat reduced performance.

To make eye gaze based applications viable and practicable,
researchers have also focused towards exploring software-
driven options of EGET. Recent works, such as OpenFace [1]
and OpenGazer [34], propose software approaches. Initial
1http://www.sr-research.com
2http://www.tobii.com
3https://theeyetribe.com



works, such as EyeTab [32], have indicated success towards
using EGET on handheld portable devices, such as tablets
and mobile phones, using the user-facing front camera. These
early successes indicate that, the EGET technology is likely
to stay and proliferate, find more practical applications.

Several research works are in the process of exploring dif-
ferent types of applications using eye gaze [5]. This encom-
passes various domains, such as neuroscience, psychology,
industrial engineering and human factors, marketing and ad-
vertising and computer science. Subtasks span all the way
over autism detection [6], text sentiment labeling [15], inter-
active application design [18] and advertising/marketing [31],
to name a few amongst myriads.

Interactive application design has been a primary focus area,
for researchers investigating applications of the EGET tech-
nology. Multiple user interaction applications have been pro-
posed, that use EGET as a core constituent. A prelimi-
nary work is carried out in the Erica system [9], where the
user gaze fixation point on the screen is estimated, and a
menu option situated at the estimated screen location is ex-
ecuted. Such works, use a statically defined cumulative fixa-
tion (dwell) duration to trigger the click event, and ignore any
user-specific or application-specific information. Note that,
eye gaze fixation, also known as “dwell”, corresponds to a
relatively long stay of gaze on a visual object.

Majaranta et al. [12] provided an adjustable dwell (fixation)
time based keyboard typing. They showed that, as the users
gained gaze-typing experience over 10 sessions, their speed
nearly three-folded, improving from 6.9 to 19.9 words per
minute. They used adjustable dwell time, where the users
could set the dwell-time for a key press (equivalent to a button
click, in our setting) manually, at any time during their experi-
ment session, to their preferred value. This work indicates the
general need to adjust dwell times on actions, such as key-
presses, on dwell based user interfaces, as well as indicates
that dwell time reduces with usage (familiarity). Note that,
while the dwell-time setting in application scenarios, such as
this, is an interesting proposition, the state of the art fails to
factor for a given user’s exposure to (experience with) the dif-
ferent portions of a given application, which is likely to lead
to different dwell times for different buttons of the applica-
tion. The state of the art also fails to automatically adjust
these dwell times, which could otherwise provide a closer-to-
perfect dwell click experience for the end users.

We propose to address this problem, and, We hypothesize that
users tend to be comfortable in having quicker and smoother
(more error-free) interactions, with systems that they are
more familiar with, and propose to apply our hypothesis to
improve dwell times for application button mouse click emu-
lation. We also aim to validate our hypothesis.

We design the OptiDwell algorithm, inspired by the Multi-
Armed Bandits problem [27]. Initially, each given button is
set with a given dwell time, for a given user. The aim is
to dynamically update the dwell click time for each button,
based upon the exposure (familiarity) that the user has gained
with the button over her course of usage, making the inter-

action fast, comfortable and accurate, with optimized dwell
times and no/minimal Midas touches [10], and validate user
comfort over a post-experiment survey. As the user gains fa-
miliarity with the system over time, it dynamically exploits
the user’s growing familiarity with the application, as well
as probabilistically explores the option of optimizing dwell-
click times for the application buttons. Further, if the sys-
tem reduces the dwell-time for click “too much” for the user
and thereby the user generates inadvertent clicks by “acci-
dentally” dwelling over unintended buttons, she explicitly in-
dicates a Midas touch (by pressing spacebar, in our experi-
ments). This, in turn, tends to increase the dwell-click time,
aiming to avoid such inadvertent clicks.

We design a television (TV) application with a menu-based
hierarchy, comprising of a set of text-based category icon but-
tons (e.g. sports, news, etc.) at the first level and image-based
channel icon buttons (e.g. ESPN, ESPN HD, etc.) at the next
(second) level of the hierarchy. The users browse through
and select a TV channel, using gaze-based dwell clicks on
the icon buttons. We demonstrate on a laptop with screen size
1, 440 px ⇥ 900 px, enabled with Eye Tribe for gaze estima-
tion. We empirically set our lower baseline for dwell times
and initial dwell time by experimenting over a combined 12
subjects. We set the lower baseline at 400 ms, i.e., this is the
fastest gaze dwell-time that our system explores during ex-
periments. We set the initial dwell-time at 1, 400 ms for each
button in the test application, keeping a 100 ms margin over
the baseline of 1, 300 ms given in the literature [7].

We perform the experiments for adaptive dwell times on 10
subjects balanced over male and female and all within the
20-30 age group, and all different from those subjects who
established the baselines. We conduct 5 sessions per subject,
with 192 click instructions per session. We observe signifi-
cant improvements in dwell-click time, with most users click-
ing most buttons as fast as the fastest manually set (lowest
dwell click time) baseline of 400 ms, in the later sessions, as
they gained exposure to (familiarity with) the interface over
the sessions. Further, in-spite of the dwell-clicks as fast as
the lowest (fastest) dwell click time manually set, we ob-
served a best case 10.56 times reduction in the number of
Midas touches over the fastest dwell click baseline, as well
as a consistently high improvement in all other cases. These
observations validate our hypothesis, as well establish a novel
baseline for fine grained adaptation for using dwell-click.

The main contributions of our paper are the following.

• We propose a dwell-click interface, that dynamically
adapts dwell time for emulating mouse click events for
each user and each button of the application. Our work
is the first of its kind.

• We design the OptiDwell algorithm for our purpose, in-
spired by the Multi-Armed Bandits problem. We tune the
exploration dynamics of the algorithm, to model the expo-
sure (usage experience) of the user for each given button.

• We empirically demonstrate the effectiveness of our sys-
tem, by (i) jointly reducing dwell click times on application



buttons and Midas touches, and (ii) validating user comfort
with a post user study survey.

RELATED WORK
The need for cognitive user interfaces has been acknowledged
in the literature. For instance, Young [33] argues that future
computer-based systems will need cognitive user interfaces to
achieve sufficiently robust and intelligent human interaction.
This work further argues that, these cognitive user interfaces
will be characterized by the ability to support inference and
reasoning, planning under uncertainty, short-term adaptation,
and long-term learning from experience. Eye gaze movement
is known to be one of the key indicators of the cognitive state
of humans [14]. Eye gaze has also been used to predict the
intent of the user [3]. Eye movement based computer-human
interaction techniques have proliferated, both using hardware
and software based solutions [13].

Mouse clicks on computers, and touch-based interaction on
smartphones, are key components in computer-human inter-
actions. Hansen et al. [7] are among the first ones to suggest
the notion of adaptive dwell times for clicking buttons using
eye gaze of users, and assigning individual button-level dwell
times. This study also indicates the significance of familiarity
with the input structure and mode, for accurate and productive
interactions. Penkat et al. [20] explore dwell clicks using user
eye gaze, and investigated the placement of content and but-
ton size aspects. Lutteroth et al. [11] create a novel scheme
for dwell-based clicking of hyperlinks, and showed the ef-
ficacy of their system to closely match that of a traditional
mouse-based interface. This demonstrates the effectiveness
of emulating mouse-click events using user eye gaze-based
dwell activities. Multiple other works exist in the literature,
that focus on the accuracy, efficacy, user-comfort and other
factors related to dwell-based mouse clicks.

Most modern-day dwell click systems are challenged by an
absence of dynamic decisions - “when” (after how much user
dwell time) should a dwell click event happen. In these sys-
tems, dwell-clicks happen after a statically defined dwell-
time threshold condition is met. Early research has em-
anated, aiming to make the dwell click time, dynamically
adjust/adapt to the user and application at hand. An early
work, by Špakov and Miniotas [26], establishes a correlation
between exit time (time interval between the moment a key
was selected and the moment the gaze left the key) and dwell
time. They map the user exit times to dwell times, and use
this mapping to adapt the dwell time in their gaze keyboard
setting. Majaranta and Bulling [12] also examine a gaze key-
board setting, aiming to provide a faster gaze typing experi-
ence to the end-user, by adapting the dwell times of the keys
on the keyboard. Their work illustrate the significance of user
familiarity and usage, as key factors to reduced dwell-click
times. In these works, the dwell times are adapted en mass
for the entire application, not as an independent adaptation
separately for different keys (or, buttons, for our setting).

Analyzing the factors that determine dwell times for visual
search, Becker [2] observes that the target item’s visual sim-
ilarity with the searched (source) item is a determinant of
dwell-time to click the object. The higher the similarity, the

higher will be the expected delay to click, leading to a higher
dwell-time. Heo et al. [8] provide a home appliance infras-
tructure, where the menu options are displayed as well as
clicked, based on user dwell behavior. In all these works,
the dwell times are static threshold based, and non-adaptive
in nature. Clearly, is is necessary to have independent adap-
tation of dwell click times for different buttons.

Dwell-click is an event implicitly inferred by an underlying
system, not an explicit user action. Hence, the systems suffer
from the risk of inadvertent clicks, where an interface incor-
rectly evaluates a given user gaze dwell as an intended inter-
action (click) command. This is known as a Midas touch.
Jacob [10] conducts an early work, emphasizing on the im-
portance of the Midas touch problem, in a dwell-click set-
ting. Vrzakova and Bednarik [29] analyze the Midas touch
phenomenon for gaze-driven events (such as clicks). They
developed an annotation scheme that enabled them to create
an error taxonomy and remedial strategies followed by users.

Dwell-based user interfaces have found support in the in-
dustry. MacOS Sierra, a desktop operating system released
by Apple in September 2016, includes dwell control by de-
fault4. This indicates the significant relevance that our re-
search bears. While Cardboard, Google’s virtual reality de-
vice, is controlled by the user’s head pose, the applications
using this platform often employ Fuse buttons - dwell buttons
in which a click can be fired during the dwell interval5.

Thus, dwell-based interfaces are gaining prominence with ad-
vancement in research, and are becoming relevant in real life
applications. Clearly, there is need and scope to improve the
adaptive dwell-click paradigm, where the dwell-times asso-
ciated with the click event of each independent button, can
be independently adapted for a given user. At the same time,
the model needs to safeguard from Midas touches, that would
otherwise impair user experience by generating inadvertent
clicks. Our methodology addresses this problem.

PROBLEM OVERVIEW
As evident from the exploration of literature, there is a clear
need for improving the dwell-click paradigm. Investigation
is needed to obtain a better understanding of the evolution of
“natural” dwell-times for click, implicitly modeling user fa-
miliarity of the different sections of a given application, fac-
toring for user agility and comfort with respect to dwell-click
times, and modeling these factors to dynamically adapt dwell
click times for different sections of given applications.

Objectives: The objectives of our work, are the following.

1. We propose to implement adaptive dwell-times for each
button of a given application, for each user, such that the
dwell-click actions are performed neither too fast, and nor
too slowly. This can be attained by adapting the dwell-
click time, implicitly leveraging the user’s familiarity of
the specific section of the application, leading to a near-
optimal clicking experience in terms of speed and comfort.

4https://support.apple.com/kb/PH25153
5https://www.google.com/design/spec-
vr/interactivepatterns/controls.html



2. Since, the user familiarity level will be different, for differ-
ent buttons (since we experiment using button clicks in the
given application), at different instants, the model needs to
adapt the dwell time of each button independently, leading
to a fine-grained improvement in user experience.

3. The model needs to provide adaptation such that, a Mi-
das touch indicated by the user on a button, would tend
to increase the dwell click time for that button. This will
attempt to greatly reduce, if not completely avoid, Midas
touches resulting from inadvertent and “too-fast” clicks.

4. We also require a qualitative validation of the model, from
real human subjects, by allowing them to experience our
system for sufficiently long, and further derive insights by
quantifying the user adaptation to an application enabled
with our system, as their familiarity with the different sec-
tions of the application grows with usage.

SOLUTION APPROACH
With the given objectives, we propose OptiDwell, wherein
we adapt a version of the action-value based solution frame-
work of the Multi-Armed Bandit problem [27], and introduce
a novel time-decaying reward mechanism in order to model
the exposure of a given user, to each given segment of a given
application (in our experiment, we use buttons within the ap-
plication). We subsequently perform user studies to obtain
insights about the effectiveness of this model, in meeting the
objectives.

While the dwell-times clearly need to be adapted, the chal-
lenges that arise are the following.

1. Should the variation of dwell time cover a continuous state
space, or does exploring a discrete state space suffice?
Note that, a state here corresponds to a distinct value of
dwell click time - the dwell time on a button, after which
the button will click because of the dwell.

2. How much to adapt (increase or decrease) the dwell click
time, at a given stage, for a given button?

3. How to create a reward function, that rewards successful
dwell gaze highly in the initial stages where the exploration
rate should be higher in order to quickly discover an op-
timal dwell time for a given user on a given button, and
reduces the exploration rate as the exploration process it-
eratively refines its understanding of a good value of dwell
click time? Further, how to penalize Midas touches?

4. What is the appropriate dwell time range (boundaries) - the
highest and lowest dwell times - that one needs to explore?

State Space Design
We note that, a state corresponds to the dwell time, that would
result in a click action on a given button for the application
usage of a given user. A state space constitutes of a set of
states. In our notation, a button at a state s

t

in the state space
S, will have a dwell click time t; that is, if a user dwells on
the button for a time duration t, a click action will be executed
on that button.

First, we debate between the options of designing a discrete
versus a continuous state space. In a continuous setting, a
button can take all the possible dwell click time values be-
tween the upper and lower dwell click time limits. If the up-
per dwell time limit of a given button is t

u

(e.g., 1,800 ms)
and the lower dwell time limit of the button is t

l

(e.g., 400
ms), then the state space S will comprise of all the possible
infinite dwell click time values, lying between

|S| = |t
u

� t

l

+ 1| (1)

In our example, this will pick a dwell time in the continu-
ous space of (e.g., 1,800 - 400 + 1 = 1,401 milliseconds, if
modeled in a continuous manner. In a degenerate approxima-
tion, this can be given, for instance, a 1 ms interval with 1,401
states, which is also a significantly high number of practically
fine-grained states.

In a discrete setting, the button will take a few of the well-
defined dwell click time values (“bins”), between the upper
and lower dwell click time limits. If the number of bins is b,
then, the number of states in the state space, defined by the
number of distinct dwell click time values, will be given by

|S| =
j
| tu � t

l

b

|
k
+ 1 (2)

We note the following.

• The difference of dwell-time of a millisecond or two, for
performing a dwell-click action, is unlikely to make a dif-
ference to human beings in real-life use. As observed by
Davis [4], it needs 30-40 milliseconds for a visual stimulus
activity even before it reaches the visual cortex. Further, as
noted by Thrope et al. [28], the human brain takes at the
best around 150 millisecond to process. Motivated by these
studies, we argue that, having a huge number of states in
the models, separated by a millisecond or two, will be re-
dundant. Having discrete states, at an interval in the range
of a hundred milliseconds, appears sufficient. This is also
observed in the human eye saccade-and-fixation behavior,
where it is noted that a typical fixation (“dwell”) takes 200-
600 ms, while, a typical transition (saccade) takes around
30-120 milliseconds, and further, the latency of eye move-
ment from one object of interest to the next is around 100-
200 milliseconds [23] [24].

• Further, having a continuous (or, fine-grained to the level
of a millisecond) state space creates a massive state space,
where even the smallest imperfection in human behavior as
well as gaze tracking hardware limitations, will introduce
noise in the model. Training such a large state space will
require massive amounts of data, and yet, because of the
inherent limitations in the behavior of the human eye as
well as the hardware, the yield of such a model will be
questionable, at the very least.

Based upon the above argument, we choose to opt for a dis-
crete state space S, with each state s

t

2 S are separated out
by a discrete time boundary. For experiments, based upon the
observations made by [24], we argue that a 200 ms boundary
will suffice. We, hence, choose to adapt with an interval of
200 ms across states. Q

t

(a) is assigned a default value as the



dwell time of its state. Each state has its own unique dwell
click time, and has a one-to-one mapping with a unique bin.

The Multi-Armed Bandits Problem
In order to model the discrete state space, and deeply ingrain
the reward-penalty paradigm associating with genuine and
unintentional button clicks made by our system based on user
dwell behavior, we draw inspiration from the Multi-Armed
Bandits problem [27]. This belongs to the estimator algo-
rithms class in the learning automata literature. The solution
uses the notion of action value proposed by Watkins [30], and
an ✏-greedy method that the author uses.

Introducing the Multi-Armed Bandits Problem: We create a
state for each bin identified between the dwell click times t

l

and t

u

(both inclusive). This gives us n = |S| choices of
states. In the n-armed bandits problem, the system is pre-
sented with a choice of n different options (namely, actions),
and after each choice, the system receives a numerical reward
having a value, that is chosen from a stationary probability
distribution, depending upon the action. The aim is to maxi-
mize the total reward over time. Since, the reward value of
each action are not known fully in advance with certainty
(even though an estimate is known), optimally solving the
problem remains non-trivial.

Our formulation of the solution, thus, becomes a task of min-
imizing dwell times and Midas touches, as a non-stationary
Multi-Armed Bandit problem, with the bandits as the dwell-
time bins. Our problem setting needs a non-stationary model,
because the reward distribution of each dwell-time bin is not
a constant. It changes for each button independently, with
usage of the button.

Since the estimates of each action value at each state are
known (note that, each action value uniquely corresponds to
one state), hence, at each time step, it is trivial to determine
at least one action, with the greatest estimated action value
- simply by finding the maximum value. This is the greedy
action. Selecting a greedy action, using the current knowl-
edge of value of actions, is termed as exploitation. On the
other hand, selecting a non-greedy action is exploration. Ex-
ploration is used to improve the estimate of the currently non-
greedy action’s reward values. While exploitation is locally
greedy in that it produces the best immediate reward value,
exploration, in spite of its lower immediate reward value, is
necessary to produce a greater reward value in the long term.
Note that, at a given step, one can only either exploit or ex-
plore, not both.

Let Q
t

(a) be the estimated value of an action a at the t-th
time step. If before the t-th time step, the action a gets chosen
K

a

times, yielding rewards R1, R2, ...RK

a

, then the value of
Q

t

(a) is estimated as

Q

t

(a) =
R1 +R2 + ...+R

K

a

K

a

(3)

At K
a

= 0, a default value of Q
t

(a) is assigned. As K
a

!
1, by law of large numbers, Q

t

(a) converges to q⇤(a), the
true (actual) value of action a.

Modeling Exploration versus Exploitation: In order to ensure
that while the current knowledge gets exploited to maximize
the immediate reward, the system also continues to explore
in order to improve the overall rewards in the long term, we
opt for a semi-uniform strategy based modeling paradigm. In
a semi-uniform paradigm, an adaptation algorithm is made to
behave greedily, performing exploitation most of the turns;
however, it explores uniformly among the rest of the state
space during the remaining turns. This is implemented by in-
troducing a parameter ✏, and initializing with 0 < ✏ < 0.5,
exploring if a uniform random number generated between 0
and 1 is smaller than epsilon, and exploiting otherwise. In ex-
perimental settings, we initialize our system with ✏ = 0.25. In
the cases of exploration, all the states that would be explored,
are chosen with a uniform random probability.

Creating the Non-Stationary Model: As noted earlier, our
problem setting is non-stationary. As a given user exposure
to (familiarity with) the given application evolves with usage,
for each button, the dwell click time adapts, attempting to
better approximate the “natural” dwell clicking behavior of
the given user. To model this phenomenon, we decay ✏ asso-
ciated with the user for the button, essentially leading to an
✏-decreasing strategy. The combination of (a) greedy choices
of exploitation versus exploration, based upon the value of
✏, and (b) the decay of ✏ for each button with usage by a
given user, makes our approach a hybrid of ✏-greedy and ✏-
decreasing strategies. We model the decay of epsilon as

✏ = 0.25 ⇤ e�ClickNo

⌧ (4)

where ClickNo denotes the count of the click made on the
given button, and ⌧ is a constant.

For our experiments, we use ⌧ = 56, based upon trial and
error, and with a constraint that the value of ✏ does not fall
under 0.01 (a small positive quantity) in the process, given
that we start with the value ✏ = 0.25. Also note that, ✏ is
never let to fall to 0, so that, the exploration is never stopped,
which makes the algorithm amenable to work for relatively
rare, but possible, necessities to adapt in the long future.

Further, in a non-stationary reinforcement learning problem
like ours, it is important to assign a higher weightage to re-
cent rewards, compared to those longer back in the past. This
is implemented using a constant step-size parameter, as ob-
served in the literature [19]. For an action, if Q

k

denotes the
estimate of the kth reward, i.e., the average of the first (k�1)
rewards, and if R

k

denotes the k

th reward, then the average
of all k rewards is obtained by

Q

k+1 = Q

k

+ ↵

h
R

k

�Q

k

i
(5)

In our setting, the step-size parameter ↵ is a constant, where
0 < ↵  1. For our experiments, we empirically set ↵ to
0.6. The quantity (1 � ↵) being less than 1, the given to
the i

th-step reward R

i

in computing R

k

will decrease, as k

increases. It has been shown in the literature that, the weight
decay is exponential with respect to (1� ↵) [19]. Thus, with
our reward shaping function, we implement a non-stationary
version of an ✏-decaying Multi-Armed Bandits problem for
adapting the dwell times of each button, for each user.



Modeling Midas Touch: Since, the familiarity of a user with
an interface, will tend to optimize the dwell click times to
the “natural” dwell click times of the user for that part of the
application interface, hence, exploration is normally carried
out only in those states within the state space, that have lower
dwell-time values, compared to the current state. The explo-
ration process does not explore the states with higher dwell
times compared to the current state, it only explores the states
with lower dwell times. The system is made to move to a
state with higher dwell time, from its current state, by im-
plementing an appropriate assignment of Midas touch reward
values. The Midas touch, which is an indication given by the
user, that the system has made an unintended dwell click, is
intuitively an event of having “clicked too fast”. This requires
assigning a penalty on the state. The objective of this penalty
will be to tend the system receive more reward by explor-
ing the “upward” states (states with higher dwell click times),
thereby tending to push the dwell click time to a value higher
than the current value. Such an objective is intuitive, because,
if a system clicks a button too fast for the user, then the dwell
click time for that button needs to increase, in order to dis-
able the accidental dwell clicks on the interface. By default,
the system assumes each dwell click to be a genuine click. If,
after an assumed genuine click, a Midas touch is indicated by
the user, the last incorrectly assumed genuine click is com-
pletely undone. This is done by restoring chosenBin and
exploitedBin from memory and back calculating for the Q

values (i.e. expectedRewards) before the update. Q values
can also be restored from memory, instead of back calculat-
ing. Note that if the user indicates a Midas touch, the Midas
touch updates occur on the button that is last clicked by the
user.

Assigning Reward Values
In our Multi-Armed Bandit based approach, we create a re-
ward value model, that will reward genuine clicks, penalize
Midas touches, and assist the system to tend each button to
the state that a given user finds most comfortable. We ob-
serve that, the time spent in an end-to-end dwell click event
of a button, including the user indicating inadvertent clicks,
will have two components.

1. The time that the user dwells on a button for a click.

2. The time taken to indicate a Midas touch, if any, by in-
dicating via an explicit reaction. In case there is no such
indication by the user, then the system assumes the click
to be genuine. In case there is an indication, then the indi-
cation is associated to the last click action observed before
the indication was made.

We model the “interaction time” as a sum total of the time
user dwells on a button for clicking, and the time to indicate
a Midas touch, and use this value for reward shaping, as

Interaction time = Dwell click time on a button+

T ime taken to indicate Midas touch

(6)
In case no indication is given by the user of a Midas touch,
the time taken to indicate Midas touch component is set to
zero. Otherwise, this value is captured as the time elapsed

between the dwell click, and the user taking the explicit action
to indicate the Midas touch. In our experiments, we ask (and
train) the user to press the keyboard spacebar, to indicate a
Midas touch. We observe that, the average time taken to press
spacebar is around 1, 350 ms, distinguishing the interaction
time of a Midas touch significantly from a genuine click.

We observe that, the solution quality will not be impacted, if
we model such that the genuine click interactions receive a
high positive reward, and Midas touches receive a low (but
positive) reward. Therefore, for ease of modeling, we define
a large offset number L, and compute reward of an action as

R

a

= L� Interaction time (7)

This ensures, Midas touches receive a lower R
a

value, as the
user takes a non-zero time to indicate the Midas touch. For
our experiments, we set L to 5, which effectively assigns the
current reward value of a given state for a given button as
5, 000 ms (5 seconds), minus the dwell click time associated
with the state (bin), and in case of a Midas touch event, also
subtract the time taken by the user to indicate. Further note
that, the interaction time will be smaller for the states with
faster dwell, since the dwell click time on such buttons will
be lesser, and hence, such buttons will receive higher rewards
for successful dwell clicks. Thus, the reward model ensures
that, the system will tend towards the fastest clicks possible,
while minimizing the Midas touches.

The Overall Solution
Our overall solution design, thus, is built upon a non-
stationary Multi-Armed bandits problem, a user exposure
(familiarity)-specific balance between exploitation and explo-
ration such that exploration rates fall off (but never zero) with
usage by the user, and a reward model ensuring that the sys-
tem moves towards the optimal click times, while minimizing
Midas touches. Please note that, for experiments, we boot-
strap with ✏ = 0.25. Further, we assume the initial dwell
click time for each button as 1, 400 ms (1.4 seconds). The
overall methodology is presented in Algorithm 1.

EXPERIMENT
To examine the user experience for our proposed OptiDwell
algorithm, we designed a generic user interface for a hierar-
chical menu system, that can be navigated via a dwell click
paradigm. The purpose of the study was to observe, whether
the adaptive facet of the algorithm was indeed useful and no-
ticeable to the user, and, what dwell time value does such a
system stabilize on after sufficient and repeated usage. The
system can mostly stabilize on the last dwell click time val-
ues that the interface settles on (except for explorations at a
low frequency), for each user and each button. We thus also
examine the user reaction to the last-set dwell click times.

Scope of Our Experiments
We first designed a menu interface, representative of the use-
cases discussed. Subsequently, we performed experiments to
set the high and the low dwell time limits. We then performed
a between-subjects study, with 2 control groups, and 1 test
group that was exposed to the adaptive interface. The control



Algorithm 1 OPTIDWELL ALGORITHM

1: for initializing each button do
2: L high positive value (REM 5 for experiments)
3: ↵ CONSTANT (REM 0.6 for experiments)
4: ⌧  CONSTANT (REM 56 for experiments)
5: cdct = 1.4 seconds (and the corresponding state)
6: REM cdct currentDwellClickTime
7: if new user then
8: ✏ 0.25, clickNo 0
9: maxBin = #states (REM 8 for experiments)

10: for each state do
11: if dwell click time of bin (state)< cdct

then
12: state.expectedRewards = 0
13: else
14: state.expectedRewards = L� dwell

click time of state
15: end if
16: end for
17: else
18: load user’s prior ✏, cdct, clickNo, expecte-

dRewards
19: end if
20: EpsilonGreedySelection()
21: S = {s

i

} set of states (action values), one corre-
sponding to each bin

22: EpsilonGreedySelection()
23: end for

24: for each dwell click event do
25: clickNo clickNo + 1
26: ✏ 0.25 ⇤ e�(clickNo/⌧)

27: if ✏ < 0.01 then
28: ✏ 0.01
29: end if
30: GenuineClick()
31: EpsilonGreedySelection()

32: end for
33: if Midas touch indicated then
34: restore expectedRewards, chosenBin, exploitedBin
35: for all bin b (states) where dwell click time > dwell

click time of chosenBin do
36: UpdateExpectation (bin, time to indicate Mi-

das touch)
37: end for
38: end if

39: EpsilonGreedySelection():
40: generate random number x, s.t. 0 < x  epsilon

41: if x � ✏ then
42: (exploit) chosenBin  bin (state) with maximum

value in state.expectedRewards
43: exploitedBin chosenBin
44: else
45: (explore) chosenBin random bin between the first

(lowest dwell click time) bin and exploitedBin
46: end if
47: update dwell time of button corresponding to chosenBin

48: GenuineClick():
49: for all bin b (states) where dwell click time > dwell click

time of chosenBin do
50: UpdateExpectation (b, 0)
51: end for

52: UpdateExpectation (bin, time to indicate Midas
touch):

53: expectation state.expectedReward of chosen bin
54: dwlRwd dwellTime corresponding to bin
55: reward L - time to indicate Midas touch - dwlRwd
56: newExpectation  expectation + ↵.(reward - expecta-

tion)
57: update state.expectedReward at bin with newExpectation

groups were given fixed high and low dwell times to com-
pare their comfort levels with the adaptive dwell time groups.
We design 8 states, having dwell click times 400, 600, 800,
1, 000, 1, 200, 1, 400, 1, 600 and 1, 800 ms respectively. In
the following subsections, we describe the interface design,
the task design for the user study, parameters for the control
and treatment groups and finally summarize the results.

Interface Design
To create a generic menu interface, we surveyed current TV
interface design guidelines to come up with a representative
interface keeping our technological constraints in mind. We
used the Eye Tribe gaze tracker with an operating range of
45 cm ⇥ 75 cm. The interface was shown on a LCD monitor
with a viewable area of dimensions 40 cm ⇥ 25.5 cm, and a
display resolution of 1, 440 px ⇥ 900 px.

The menu was 2 levels deep, with 4 buttons in the first level,
and 5 buttons in the second level with 1 Home button. The

button sizes were derived from [7], fixed at 208 px ⇥ 244 px
to fit the content, image and text and maintain uniform visi-
bility. They were fixed by repeated testing with the eye tribe
and monitor setup to account for eye gaze jitter. Each but-
ton gives a color based feedback to highlight the user, that
it is being dwelled on. The color transitions as initial bright
green ! yellow ! red with a fade out ! fade in, with ani-
mation between each color pair. These colors are chosen due
to their high sensitivities. The transition is equally spaced for
the dwell click time of that button. For example, if the dwell
click time is 900 ms, each of the 3 transition takes 300 ms, as
shown in Figure 1. The border also thickens to further define
the highlighting. A pop sound accompanies the click, provid-
ing audio feedback.

Task Design
The user has two inputs to the system: her gaze and her press
of spacebar for recording unwanted clicks (Midas touches).
Each user goes through a total of 192 tasks, 12 clicks per icon



Figure 1. Gradual transition of button state, as dwell duration increases

for 16 icons. The order of these tasks are randomized, but all
3 groups go through the same tasks for every session.

A landing page is shown first, with the system usage instruc-
tions. To proceed, the user dwells on the “Begin” button. This
button is initialized with a constant dwell time of 1, 400 ms,
and is not accounted for in the study. The user then faces
the first (topmost) level of the menu. This menu has text but-
tons, shown in Figure 2. The instructions for the current task
are shown in the bottom right corner of the screen as plain
text, and also relayed via audio. The user then selects the top
menu, to go to the next level, for example from “News” to
find “CNN”, and then she has to dwell on the correct choice
to finish the task. The inner menu has image buttons, shown
in Figure 3. To ensure that, the button laid out at the same
position as (“directly below”) the previous button on the new
screen, does not get dwell-clicked by accident, the user has
to first gaze to the space outside the button (the “non-button
space”), and then either gaze back on that button, or dwell on
a different button, based on what she intends to click next.

If incorrect, then the audio instructions are “Incorrect, you
have to find <current object name> for this example.” A cor-
rect answer prompts the audio, “Correct! Now find <next
object name> and the instruction text is updated.” Both feed-
backs are provided after a 1, 000 ms pause. This pause allows
users to decide if the click was intended or not. They can
record unintended clicks (Midas touches) using the spacebar
via the keyboard attached. If the user records a Midas touch,
the system acknowledges to the user via audio, “Error noted”,
and the screen gently flashes deep red color as visual feed-
back. The study setup is shown in the Figure 4.

User Study
We conducted a user study with 4 users in the control groups,
that we exposed to the interface with fixed dwell times of 400
ms and 1, 400 ms. All users were from a lab environment
and were regular computer users. The adaptive dwell time
system was used by 10 users. All users were given a trial
session of 4-5 minutes with a similar interface but different
icons with very high dwell time to adjust to the gaze an input
paradigm. Then the same interface would be used with a very
low dwell time to make the user understand how to register
unintended clicks. The users then filled a pre-questionnaire
inquiring about their eye and general fatigue before every ses-
sion. All users in all groups finished 5 sessions each, with an
average gap of 18 hours (between 5 to 24 hours, chosen at
random).

Selecting High and Low Dwell Times
High dwell times between 1, 300 ms [7] and 3, 000 ms [25]
are recommended. We set the initial dwell-time at 1, 400 ms
for each button in the test (adaptive) application, keeping an
extra 100 ms margin over the baseline of 1, 300 ms observed
in the literature [7]. We determined a high dwell time value

of 1, 400 ms, based upon observations made by [7], factoring
in an extra 100 ms margin for additional safety against po-
tential dwell click errors, and validating this with a pilot run.
The low dwell time was chosen after performing another pi-
lot run on 2 users to the experimental interface at 200 ms, and
2 more users at a 300 ms constant dwell times. The 200 ms
dwell click interfaces registered more than 50 Midas touches
each, and the 300 ms interface registered more than 40 Midas
touches each. Further, the users reported high fatigue even
before the sessions proceeded halfway for both values. Both
the 200 ms interface users abandoned the system midway,
complaining discomfort of use. The 300 ms interface users
completed the trial run, but complained of severe discomfort
of usage also. Hence, we discarded 200 ms and 300 ms as
too low to be useful dwell click times. 400 ms constant dwell
times were reported to be much more usable (reported later in
the results), and hence we used 400 ms as the lower baseline
for fixed dwell times.

Data Collection
In the initial run, in spite of a pre-experiment hands-on train-
ing, most of the users made a few to many errors, to indicate
Midas touched by pressing the spacebar key. After the first
session, they were mostly able to indicate the Midas touches
correctly, thereby reducing the number of unreported Midas
touches. Sometimes the Eye Tribe would lose track of the
users resulting in a system freeze, they would resume within
a few seconds. If not, then the Eye Tribe was re-calibrated af-
ter pausing the session, and then resuming the session after a
good (5 or 4 star) calibration. A similar proportion of users re-
ported weariness for all the high, low and adaptive dwell click
systems, so we logically attribute to variations in the starting
time of the session, such as early morning or late evening,
and observe that this is independent of the dwell times (high
vs. low vs. adaptive), indicating inherent characteristics of
dwell-click based systems.

RESULTS

Improvement of Dwell Time with Adaptation
As the users gain familiarity with the dwell based interface,
we observe that the the OptiDwell system significantly re-
duces the average dwell time for clicks, across all the buttons.
This is captured by faster dwell clicks, captured in Figure 5.
This establishes the first part of our baseline premise, that, the
users tend to be comfortable in having quicker interactions,
with systems that they are more familiar with.

Reduction of Midas Touches with Familiarity
As the users gain familiarity with the dwell based interface,
we observe a significant reduction of Midas touches made
by the user. This establishes the second part of our base-
line premise, that, the users tend to be comfortable in having
smoother (more error-free) interactions, on systems that they
are more familiar with. This further provides a justification
for having adaptive dwell click time based interfaces. The
trends are similar for adaptive as well as non-adaptive inter-
faces, and for non-adaptive interfaces, both for high as well as
low dwell click times. The improvements of usage, in terms
of reduction of Midas touches, is shown in Figure 6. In each



Figure 2. Home page screen, with text but-
tons only. Instruction at bottom right corner.

Figure 3. One of four second-level screens.
Dwell-clicking “News” navigates here.

Figure 4. Our experimental setup with Eye
Tribe and keyboard.

Figure 5. Trends of dwell click time, for different types of buttons, for
the adaptive system, evolving over user sessions.

subfigure, the horizontal axis represents the session sequence
of a given user. Note that, in our experiments, each user had
undergone 5 sessions, hence 5 entries in the axis. The vertical
axis represents the average number of Midas touches made by
the users (normalized per 100 dwell clicks), in the given ses-
sion sequence, i.e., the average of the first session of the users,
the average of the second session of the users, and so on.

The improvements attained by users over sessions, is captured
in Table 1. The S1/S5 ratio denotes the ratio of the average
number of Midas touches observed across users, in session
1 to session 5. A high value indicates a much-lower Mi-
das touch count in session 5, compared to session 1, indicat-
ing significant improvement. Regression trend lines for each
button for each user over the session show a decrease with
steeper slopes for text buttons than image buttons (p < 0.02).
The improvement is stark for the adaptive model, especially
the images. Although the adaptive system settled often at a
dwell click time of 400 ms for most buttons and most users,
the number of Midas touches were significantly lower for the
adaptive system, compared to the low dwell click time sys-
tem also having a 400 ms click. The best users (lowest Mi-
das touches) in the adaptive system had close to zero Midas
touches in the later sessions (Figure 7), performing more ac-
curately than the best users for both the other (high and low
dwell time) systems. In general, a ratio of the number of low
to adaptive Midas touches, for the average user, indicate stark
improvements in terms of error-free interactions with the sys-
tem, as noted in all the three Lo./Ad. rows in Table 1. For
images, after the adaptation process in the final (5th) session,
this ratio is a high 10.56. This indicates the effectiveness of
gradual adaptation of dwell time.

Ad. Sess. Sess. Sess. Sess. Sess. S1/S5
Type #1 #2 #3 #4 #5 Rat.
All, Ad. 1.74 0.94 0.85 0.62 0.36 4.78
All, Lo. 5.65 4.65 3.74 3.15 2.40 2.35
All, Hi. 0.047 0.09 0 0 0.091 0.52
Lo./Ad. 3.24 4.92 4.41 5.05 6.59 -
Txt, Ad. 1.44 0.95 0.58 0.59 0.29 4.93
Txt, Lo. 4.09 2.41 1.36 0.82 0.82 4.96
Txt, Hi. 0 0 0 0 0 0/0
Lo./Ad. 2.85 2.54 2.36 1.39 2.83 -
Img, Ad. 2.31 0.95 1.33 0.69 0.51 4.57
Img, Lo. 8.47 8.34 7.59 7.10 5.34 1.59
Img, Hi. 0.13 0.25 0 0 0.26 0.50
Lo./Ad. 3.67 8.78 5.71 10.25 10.56 -

Table 1. Trend of Midas touches per session (normalized), with increas-
ing user familiarity. Here, ad. adaptive, hi. gets high, lo. low, sess
 session, txt  text, img  image, S1/S5 rat.  Midas touch ratio
between session 1 and session51, lo./ad. gets Midas touch ratio of low
dwell model and adaptive dwell model for a given session.

User Experience of The System
We performed pre and post evaluations, for each user for each
session. We asked the users to rate their eye and general fa-
tigue at the start and end of each session on a 7 point Likert
scale, shown in Figures 8 and 9 respectively.

The post evaluation measured the effects of the adaptive and
non-adaptive systems on 4 questions on a 7-point Likert scale.
The users were blind to the system type (adaptive, high, low).
The questionnaire mentioned that the dwell time may or may
not have been modified. The 4 questions pertained to the
user comfort (“very uncomfortable” to “very comfortable”),
system responsiveness (“too slow” to “too fast”), the experi-
ence that the adaptation provided (“very obstructive” to “very
helpful”), and their overall experience(“very frustrating” to
“very satisfying”). We aggregate the answers for all users per
session, to compare the adaptive system with the high and
low dwell time systems via a One way ANOVA, and found
that the adaptation was both significantly more comfortable
(F (2, 12) = 15.44, p = 0.004) and responsive than both
the low and high constant dwell times (F (2, 12) = 11.09,
p = 0.02). The adaptive system provided a significantly more
satisfactory user experience (F (2, 12) = 21.48, p = 0.0001)
both with respect to the adaptation and the overall experience
(F (2, 12) = 16.73, p = 0.0003), compared to both the other
systems (p < 0.05 for all comparisons).

DISCUSSION
Our experiment indicate that, OptiDwell plays a balancing
role, in optimizing per-user per-button dwell click time, while
keeping Midas touches at a minimal. This establishes our



(a) Improvement for All Buttons (b) Improvement for Text (Category) Buttons (c) Improvement for Image (Channel) Buttons
Figure 6. Midas Touch improvements with increasing user familiarity. As the user familiarity increases, Midas touches significantly reduce in number.

Figure 7. Midas touches of the most comfort-
able users on the three dwell time systems

Figure 8. The absolute eye fatigue decreases
more for the adaptive system

Figure 9. The absolute fatigue decreases
more for the adaptive system

work as a robust first-of-its-kind platform for adaptive dwell
clicks, and creates a baseline for future research.

User comfort gained by adaptation: An interesting obser-
vation is that, while the adaptive model finally adapted to 400
ms dwell time for almost all the subjects ( Figure 5), which is
the same dwell time as the lower baseline, the number of Mi-
das touches even in the final (5th) session of the fixed lower
baseline were much higher compared to the adaptive models
(Figure 6). The post-survey indicated higher user comfort for
the adaptive dwell over the low dwell, even when the adaptive
dwell system was clicking buttons mostly at 400 ms.

Eye fatigue: The proposed adaptive dwell click system was
accepted well by the users. As shown in Figure 8 and Fig-
ure 9, the fatigue caused by each given session, measured as
the difference of eye fatigue at the start of the session and that
at the end of the session, is lower, on an average, with our
adaptive dwell click time based system, compared to the high
and low dwell click time based systems. In their post-survey,
the users did not report discomfort, although the t-test did
not conclusively establish the significance. Nevertheless, the
indications are encouraging, and calls for a focused examina-
tion, across different adaptive dwell click based applications
with different button types, and diverse individuals with dif-
ferent backgrounds and demographic attributes, in the future.

Impact of choosing ↵ and ✏ values: In our setting, the initial
rate of exploration needs to be high enough, while ensuring
sufficient exploitation of the states. Further, over time, the
rate of exploration needs to fall, as the system stabilizes to
the appropriate dwell click values. This rate of fall needs
to be fast enough that so the user does not remain in non-
optimal dwell states for too long, but slow enough for the
user to gain familiarity with the system in order to minimize

Midas touches. Choosing a high initial value for ✏ is also
likely to cause rapidly changing dwell click times over the en-
tire permissible ranges of dwell click time values, caused by
over-exploration, and leading to user discomfort. Our choice
of the initial value of epsilon (✏) as 0.25, the rate of fall of ✏,
and the final stabilization of ✏ at 0.01, are all based upon this
requirement. Further, since ✏ is never let to fall to 0 by design,
the exploration process never completely aborts. This makes
our approach effective for possible adaptation requirement in
the long run.

Choosing alpha (↵) low (nearly zero) will alter the reward
structure to make the model highly stationary, and choosing
↵ high will make it significantly non-stationary. This justifies
the selection of ↵ in the mid-range, and we chose ↵ 0.6 for
our experiments, using an initial trial-and-error on a handful
of pilot participant subjects. In future, it will be interesting to
explore and create formal methodology to assign the values
of ↵ and ✏, as well as, the decay rate of ✏.

Improvements made by users: We observe that, as users
gain familiarity over time, our algorithm converges to their
optimal dwell time faster, as seen in Figure 5. The number
of Midas touches also reduces, as seen in Figure 6. As indi-
cated in Table 1, the rate of reduction of Midas touches is high
for the users with our adaptive system, compared to the fixed
(both high and low) dwell click time based systems. We fur-
ther observe from Table 1 that, the rate of improvement made
by the users on the text buttons are similar for the low and
adaptive dwell settings, while the rate of improvement made
by the users on the image buttons are significantly higher for
in the adaptive dwell click settings compared to the others.
An examination of the individual user data (not presented in
the paper for space constraints), reveals this as a consistent
trend. While there could be several possible explanations to



this phenomenon, we do not attempt to explore further, as this
is not in scope of our problem.

Choosing a different model: Another area that needs more
exploration in the future, is the model chosen for adaptation.
Our work has established a first-of-its-kind baseline for using
adaptive dwell click for user interface design, using the Multi-
Armed Bandits problem model. However, it is important to
perform subsequent explorations, to establish the viability of
other adaptive dwell click models, by deploying those mod-
els, and comparing performance with our system. While our
model does dramatically decrease Midas touch rates, it does
rely on sufficient hand tuning in terms of choosing param-
eters such as ↵ and ✏ and appropriately choosing the dwell
bins. Additionally, the OptiDwell algorithm does not explic-
itly optimize user comfort, but aims to reduce midas touches
(or more specifically, optimize interactiontime). We ex-
pect more user data and better user modeling to make way for
more superior models (e.g. Q-learning).

Handling more complicated interactions: Click and drag
interactions are more complicated and can be explored in fu-
ture research. Performing them via this paradigm might re-
quire revisiting the core concept of dwell time, as they may
require capturing the interaction context too. A simple in-
creased dwell time will be an abrupt mapping to a traditional
long click. So, we need to rethink the dwell time bins, or
completely capture the intention of a long click for dragging
to be a more acceptable interaction. Also dragging will have
to made smooth if the user looses track of where the target is,
to accommodate searching glances.

CONCLUSION
We proposed OptiDwell for intelligent adjustment of dwell
click times. Using the hypothesis that users tend to be com-
fortable in having faster interactions with familiar system, we
designed a framework that, over time, models implicit user fa-
miliarity with different parts of a given application interface,
and thereby dynamically establishes per-user and per-button
dwell times to emulate mouse click events. OptiDwell com-
prises of explorations and exploitations, and different reward
values for genuine dwell-clicks and Midas touches, for dwell
click time adaptation. We experimented with a television
channel catalog application, comprising of a mix of text and
image buttons. We demonstrated the effectiveness of our sys-
tem, by performing a user study on the adaptive interface on
10 computer-savvy subjects, in the 20-30 year age-group, bal-
anced between males and females. Our experiments indicated
a combination of (a) optimization in dwell click times (the
fastest dwell-clicks that an individual is comfortable with)
and (b) reduction in Midas touches (as high as a 10-fold re-
duction in the best case), along with high user comfort, as
each user’s familiarity with the interface increased over the
5 sessions. Our model can be used to create dwell-click in-
terface based applications, deeply ingraining the clicking be-
havior of each user for each button.
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