

Note Code – A Tangible Music
Programming Puzzle Tool

Abstract
We present the design of Note Code – a music
programming puzzle game designed as a tangible
device coupled with a Graphical User Interface (GUI).
Tapping patterns and placing boxes in proximity
enables programming these ‘note-boxes’ to store sets
of notes, play them back and activate different sub-

components or neighboring boxes. This system
provides users the opportunity to learn a variety of
computational concepts, including functions, function
calling and recursion, conditionals, as well as engage in
composing music. The GUI adds a dimension of viewing
the created programs and interacting with a set of
puzzles that help discover the various computational
concepts in the pursuit of creating target tunes, and
optimizing the program made.

Author Keywords
Computational thinking, puzzle based learning, tangible
interaction, tangible music, education

ACM Classification Keywords
H.5.2 - User Interfaces, L.1.2 - Learning Objects.

Introduction
Computational thinking refers to a problem solving
technique that uses computer science techniques. Over
the past few years, it has gained recognition as a skill
not just for computer scientists; but a basic skill
required in modern society in domains from art to
science and blended into people’s daily life, as
described by Wing and Papert [1,2]. Computational
thinking involves finding patterns, decomposing
problems into smaller pieces, and using the provided
tools.

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

TEI '15, Jan 16-19 2015, Stanford, CA, USA
ACM 978-1-4503-3305-4/15/01.
http://dx.doi.org/10.1145/2677199.2688817

Vishesh Kumar
Indian Institute of Technology
Guwahati, India
k.vishesh@iitg.ernet.in

Tuhina Dargan
Indian Institute of Technology
Guwahati, India
tuhina@iitg.ernet.in

Utkarsh Dwivedi
Indian Institute of Technology
Guwahati, India
d.utkarsh@iitg.ernet.in

Poorvi Vijay
Indian Institute of Technology
Guwahati, India
poorvi@iitg.ernet.in

There is an incessant construction of tools and systems
to make learning programming, or its basic paradigms,
simpler for children. Starting with Logo [3], other tools
for the same would include AlgoBlock [4], ToonTalk [5],
AgentSheets [6], and the largely successful Scratch
developed at the MIT Media Lab [7].

Tangible Programming
Piaget and Bruner have showed in the past that it is
often more useful to give children concrete examples
and objects to enable problem solving, before teaching
them the associated symbols. [8,9] This speaks to
both, a need for going away from typical syntax, and
using more approachable elements (like graphic icons
etc.), as well as making tangible tools for the same.
McNerney et al reinforce the observation that
introduction with syntax is not a suitable way to begin
learning to program, especially for primary-middle

school aged children [10]. In this
spirit, numerous TUIs have been
developed to enhance student
learning of technology, via
technology. Most of these, would be
called Resnick’s “digital
manipulatives” or “programming
construction kits” – like ‘kinetic
recorders’ such as Curlybot [11],
Topobo [12], or Algorhythm [13]; or
helping storytelling by children, such
as Telltale [14], and so on.

Tangible music
Numerous tangible music devices
have been designed, and prototyped
[15], for a variety of purposes.
Beginning with the highly popular

Reactable, that allows for collaborative music creation
by moving tangible markers on a table being followed
by sensors – we find BlockJam[16]: a system that
involves ‘blocks’ that store musical pieces, are linked
with each others, and are sequentially played by using
play blocks. This comes quite close to the tangible
aspect of our designed tool as well, though with some
crucial differences with respect to stress on the
programming paradigms one can interact with. Similar
sequencers like Siftables Music Sequencer, based on
similar principles, have also been developed.

Music and Computational Thinking
Performamatics [17] is a workshop with a plethora of
activities aimed to bridge computational thinking and
music, and interest people from both disciplines. Music,
and relatedly sound thinking, is seen as a ripe avenue
to integrate with CT – as both are fertile with patterns,
repetition and identification of patters.
Additionally, using computational thinking and
programming paradigms allows for an innovative and
new approach for music composition, especially in Note
Code.

Design and Functionality
Note Code’s design and functioning is heavily influenced
by concepts of puzzle based learning, since Puzzle-
based learning shares many of the pedagogical goals of
the emerging paradigm of Computational Thinking [1,
18]; inspired from the drum-bots of Algo.Rhythm,
which is conceptually similar to BlockJam and other
tangible music systems – recording information in
individual blocks, and calling neighboring blocks to
play.
Further, the programming concepts we attempted to
embed in our interactions and systems, were those of Figure 1. Concept diagram of Note Boxes

functional modularity, and
conditionals – functions being the
only non-intuitive construct for
beginners to need to understand
and grasp, while being one of the
most fundamental concepts in
computational thinking – along
side control structures like
conditions and loops.
To embody these, we built a note-
box with buttons for sets of notes,

and function buttons to hold
recordings of sequences. This
ended up being significantly

similar to Perlman’s Button Box. [19] The differences
being recording music, is equal parts ‘programming by
rehearsal’ (not requiring the player to think in terms of
abstracted instructions) [19] as well as programming in
a language i.e. with relatively abstract instructions,
when puzzles (tasks of target tunes required to be
created) are worked upon.
To enable activating different blocks from one, we
made ‘edge calls’ so that each of the edges could be
executed as a step just like any of the other notes. The
ability of receiving edge calls, also provided an avenue
for implementing conditionals – such that instructions
are conditional on receiving signals on an edge, at that
step. The implementation of conditionals on edge
signals, and using this as a paradigm of computational
thinking to interact with, is a feature that makes Note
Code significantly unique compared to the numerous
other tangible music systems.

Detailed Working
In our prototype, each note-box had six note buttons
(notes A to F), four edge out buttons (call edges 1 to

4), four edge in buttons (if edges 1 to 4) two function
buttons, and one play button.
To start recording a function, one of the function
buttons would be pressed (F1 or F2), and then a
sequence of notes, edge buttons, and function buttons
would be pressed – which would be recorded into the
initially chosen function. The play button would be
pressed to stop a function’s recording, and in case no
function is being recorded – the play button would
‘play’ the note-box i.e. call F1.
The edge buttons send a signal to the outgoing
connectors on each of the edges. During recording a
function, pressing a function button records a function
call. Pressing an out edge button calls the edge, and
pressing an in edge button records a conditional – if a
signal is received on that edge during play, the
following instruction will be implemented, otherwise it’ll
be skipped. For example, following is a set of button
presses, and then the corresponding recorded functions
as a result of the same:
F1 – note B – note A – call edge 2 – note D – F2 – if
edge 1 – F1 – note C – Play
produces the program:

f1() {

B;

A;

edge 2;

D;

f2();

if (edge 1) {

 F1(); }

C; }

Figure 2. An initial limited prototype prepared

Each row of instruction takes a beat to ‘play’, check, or
be executed. When another note-box is placed in
connection with the edge of an earlier note-box, the
corresponding edge calls and conditionals enables the
possibility of complex and layered music.
This entire construction has been prototyped by using a
microcontroller (Arduino/MaKeyMaKey) inside a hand-
sawn plywood box. The microcontroller programming,
and coupled GUI, have been made using Processing.

Puzzles and GUI
We coupled this system with a
GUI (on a connected computer),
to help keep track of the contents
of the recorded functions. This
GUI also had a puzzle component
– which would offer the target
note sequence, and the minimum
number of instructions in which
the same should be doable. Our
preliminary tests involved seeing
how quickly students could grasp

the concept of grouping repeated instructions using
functions, on a ‘puzzle’ that involved creating the
Happy Birthday tune: “ A A B A D C A A B A E D ”.
This was preceded and followed by other puzzles to
help grasp similar concepts, where the target note
sequence was attempted to be melodious as often as
possible.
The GUI also helped follow the program flow, by
highlighting the instruction being executed at every
beat. This helped the players in keeping track of how
correctly the program they had made, was behaving.

Discussions and Future Works
We imagine extending the abilities of the described
system to make the music composition abilities far
richer. It should be possible, to choose different
instruments on different boxes, let alone different
scales of notes as well. We chose just 6 note buttons
for easier implementation, but more – at least 12 notes
spanning one octave (per box) would be desirable.
Also, making these note boxes standalone, i.e. not
requiring a connected computer, would also help
greatly in making this TUI more mobile, and easily
playable.
Enriching the GUI for greater ease of appearance and
use, and perhaps enhanced functionality with respect to
changing boxes’ properties (like sound quality, tempo,
instrument) would enhance the experience further.
A preliminary testing showed that the ability of creating
melodious tunes by solving puzzles, or open endedly
exploring on the boxes – to discover either new music,
or computational concepts – is highly exciting for both
9th graders as well as college freshmen. We believe that
tying seemingly disparate fields like music composition
and learning programming exhibits great promise, and
further constructs around this should strive to balance
simplicity of usage and representation, along side more
paradigms like objects, variables, etc.

References
[1] Wing, J.M. Computational thinking and thinking
about computing. Philosophical transactions. Series A,
Mathematical, physical, and engineering sciences,
366(1881), 3717-25, 2008.
[2] Papert, S. Teaching Children Thinking (AI Memo
247), MIT, Cambridge, MA, 1971.
[3] Papert, S. (1980). Mindstorms: Children,
computers, and powerful ideas.

Figure 3. Screenshot of the coupled GUI

[4] Suzuki H., Kato, H. 1995. Interaction-level support
for collaborative learning: AlgoBlock—an open
programming language. In The first international
conference on Computer support for collaborative
learning (CSCL '95), John L. Schnase and Edward L.
Cunnius (Eds.). L. Erlbaum Associates Inc., Hillsdale,
NJ, USA, 349-355.
[5] Kahn, K. (1996). ToonTalkTM–An Animated
Programming Environment for Children (Vol. 7).
(Elsevier, Ed.) Journal of Visual Languages &
Computing. Leave & Wegner. (1991). Situated
learning: Legitimate peripheral participation. Cambridge
University Press.
[6] Repenning, A., Ioannidou, A., & Zola, J. (2000).
AgentSheets: End-user programmable simulations.
Journal of Artificial Societies and Social Simulation, 3(3)
[7] Resnick et al., M. (2009). Scratch: programming
for all. Commun. ACM 52.
[8] Bruner, J. (1966). Theory of Instruction.
Cambridge, Mass.: Harvard University Press
[9] Piaget, J. (1973). The child and reality: Problems of
genetic psychology.
[10] McNerney, Timothy S. "From turtles to Tangible
Programming Bricks: explorations in physical language
design." Personal and Ubiquitous Computing 8.5
(2004): 326-337.
[11] Frei, P., & Su, V. (2000). Curlybot: designing a
new class of computational toys. In Proceedings of the
SIGCHI conference on Human Factors in Computing
Systems (CHI '00). ACM, New York, NY, USA, 129-136.
[12] Raffle, H. S., Parkes, A. J., & Ishii, H. (2004).
Topobo: a constructive assembly system with kinetic
memory. Proceedings of the SIGCHI conference on
Human factors in computing systems (pp. 647–654).

[13] Peng, H. 2012. Algo.Rhythm: computational
thinking through tangible music device. In Proceedings
of the Sixth International Conference on Tangible,
Embedded and Embodied Interaction (TEI '12),
Stephen N. Spencer (Ed.). ACM, New York, NY, USA,
401-402.
[14] Ananny, M. (2002). Supporting children’s
collaborative authoring: practicing written literacy while
composing oral texts. Proceedings of the Conference on
Computer Support for Collaborative Learning:
Foundations for a CSCL Community (pp. 595–596).
International Society of the Learning Sciences.
[15] Tangible Music. "URL:
http://modin.yuri.at/tangibles." Consultado em 24.04
(2009).
[16] Newton-Dunn, Henry, Nakano, H., Gibson J. "Block
jam: a tangible interface for interactive music."
Proceedings of the 2003 conference on New interfaces
for musical expression. National University of
Singapore, 2003.
[17] Jesse M. Heines, Gena R. Greher, and Sarah Kuhn.
2009. Music performamatics: interdisciplinary
interaction. SIGCSE Bull. 41, 1 (March 2009), 478-482.
[18] Falkner, N., Sooriamurthi, R., Michalewicz, Z.
Teaching puzzle-based learning: development of basic
concepts. Teaching Mathematics and Computer
Science, 2012; 10(1):183-204
[19] McNerney, Timothy S. "From turtles to Tangible
Programming Bricks: explorations in physical language
design." Personal and Ubiquitous Computing 8.5
(2004): 326-337.

